A Novel Local Human Visual Perceptual Texture Description with Key Feature Selection for Texture Classification
نویسندگان
چکیده
منابع مشابه
Discriminant Feature Selection for Texture Classification
The computational complexity of a texture classification algorithm is limited by the dimensionality of the feature space. Although finding the optimal feature subset is a NP-hard problem [1], a feature selection algorithm that can reduce the dimensionality of problem is often desirable. In this paper, we report work on a feature selection algorithm for texture classification using two subband f...
متن کاملMulti-class feature selection for texture classification
In this paper, a multi-class feature selection scheme based on recursive feature elimination (RFE) is proposed for texture classifications. The feature selection scheme is performed in the context of one-against-all least squares support vector machine classifiers (LSSVM). The margin difference between binary classifiers with and without an associated feature is used to characterize the discrim...
متن کاملCompact color-texture description for texture classification
Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature....
متن کاملA Kind of Visual Speech Feature with the Geometric and Local Inner Texture Description
In this paper, we propose a type of joint feature with geometric parameters and color moments to represent the speaking-mouth frames for image-based visual speech synthesis systems. Based on FDP around the mouth area, the geometric feature is obtained by computing Euclidean distances to describe the width of the speaking mouth, the height of the outer and inner lips and the distances between th...
متن کاملVolumetric Texture Description and Discriminant Feature Selection for MRI
This paper considers the problem of classification of Magnetic Resonance Images using 2D and 3D texture measures. Joint statistics such as co-occurrence matrices are common for analysing texture in 2D since they are simple and effective to implement. However, the computational complexity can be prohibitive especially in 3D. In this work, we develop a texture classification strategy by a sub-ban...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2019
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2019/3756048